
MMAT5120 - Topics in Geometry
Solutions to HW1

1. We are given

x+ iy = S(a, b, c) =
a+ ib

1− c
.

Solve 
a

1− c
= x

b

1− c
= y

a2 + b2 + c2 = 1

.

We have

|z|2 = x2 + y2 =
a2 + b2

(1− c)2
=

1− c2

(1− c)2
=

1 + c

1− c
.

It follows that

c =
|z|2 − 1

|z|2 + 1

and

a = x(1− c) = 2x

|z|2 + 1

b = y(1− c) = 2y

|z|2 + 1
.

2. (a) The general form of a straight line ` is given by

Ax+By + C = 0

where A and B are real numbers, not both equal to 0.

Then

f(`) =

 ∞ if B = 0

−A
B

otherwise
. (1)

Let T : (x, y) 7→ (x+x0, y+y0) be a translation (x0, y0 ∈ R). Then T (`) consists
of points (x′, y′) satisfying

x′ = x+ x0, y
′ = y + y0 and Ax+By + C = 0.

It is equivalent to

A(x′ − x0) +B(y′ − y0) + C = 0

⇐⇒ Ax′ +By′ + (−Ax0 −By0 + C) = 0.

The last expression represents a straight line.



Let R : x + iy 7→ eiθ(x + iy) be a rotation (θ ∈ [0, 2π]). Then S(`) consists of
points (x′, y′) satisfying

x′ + iy′ = eiθ(x+ iy) and Ax+By + C = 0. (2)

Notice x + iy = e−iθ(x′ + iy′) = (x′ cos θ + y′ sin θ) + i(y′ cos θ − x′ sin θ). (2)
is equivalent to

A(x′ cos θ + y′ sin θ) +B(y′ cos θ − x′ sin θ) + C = 0

⇐⇒ (A cos θ −B sin θ)x′ + (A sin θ +B cos θ)y′ + C = 0.

The last expression represents a straight line.

Since any transformations in the Euclidean geometry are compositions of a rota-
tion and a translation which, as we have just seen, preserve D, the same is true
for these transformations.

(b) Yes. By (a), T (`) is represented by

Ax′ +By′ + (−Ax0 −By0 + C) = 0.

Then by (1),

f(T (`)) = −A
B

= f(`).

This proves that f is invariant under translational geometry.

(c) No. For example, take ` = x−axis. Then f(`) = 0. If we apply the rotation R by
90◦ clockwise to `, we get R(`) = y−axis with f(R(`)) =∞ 6= 0.

3. (a)
(z0,∞; z2, z3) = lim

z→∞

z0 − z2
z − z2

· z − z3
z0 − z3

=
z0 − z2
z0 − z3

.

(b) Recall the formula

z − z2
z1 − z2

· z1 − z3
z − z3

=
w − w2

w1 − w2
· w1 − w3

w − w3
.

Put (z1, z2, z3) = (0, i, 2) and (w1, w2, w3) = (−2i, 1, 0). We get

w =
z − 2

2(1 + i)z − i
.

(c) Let a ∈ C − {1, i} be a variable which is sent to ∞. We look for Ta ∈ M
satisfying

1 7→ 1

i 7→ i

a 7→ ∞
.

By the formula above, we have (w = Ta(z))

z − i
z − a

· 1− a
1− i

=
w − i
1− i



so
Ta(z) =

(1− a+ i)z − i
z − a

.

Remark. There are indeed more than one expression for the answer, but each
expression is related to the other by a change of variable for a.

4. Let C1 and C2 be two clines. Pick three distinct points z1, z2, z3 ∈ C1 and three
distinct points w1, w2, w3 ∈ C2. By the fundamental theorem of Moebius geometry,
there exists a (unique) T ∈ M such that T (zi) = wi, i = 1, 2, 3. Since Moebius
transformations map clines to clines, it follows that T (C1) is a cline passing through
w1, w2, w3.

Finally, using the fact that every cline is uniquely determined by any of its three
distinct points, we conclude T (C1) = C2.

5. Recall z and z∗ are symmetric with respect to a cline C if

(z, z1; z2, z3) = (z∗, z1; z2, z3) (3)

where z1, z2, z3 are any three distinct points of C.

Recall also that Moebius transformations preserve symmetry, i.e. if z and z∗ are
symmetric with respect to C, then T (z) and T (z∗) are symmetric with respect to
T (C).

(a) Suppose first that C is the x−axis. Choose (z1, z2, z3) = (1, 0,∞). Then (3) is
equivalent to

z = z∗

or
z∗ = z

so symmetry is indeed equivalent to reflection in the usual sense.

Assume now C is a general straight line. Then there exists a transformation S
in the Euclidean geometry (i.e. the composite of a translation and a rotation)
sending C to the x−axis. The key point is that S preserves both symmetry (being
a Moebius transformation) and reflection (being a rigid motion). It follows that if

z and z∗ are symmetric with respect to C,

then
S(z) and S(z∗) are symmetric with respect to the x-axis.

From what we have proved above, we have

S(z) is the reflection of S(z∗) with respect to the x-axis,

and hence

z = S−1(S(z)) is the reflection of S−1(S(z∗)) = z∗ w.r.t S−1(x-axis) = C.



(b) In this part and the next, we may assume C and C ′ are general clines.

Choose a T ∈ M sending an intersection point of C and C ′ to ∞. Then T (C)
and T (C ′) are two perpendicular straight lines (as T preserves orthogonality).
Moreover T (z) and T (z∗) are symmetric with respect to T (C).

By (a), T (z) is the reflection of T (z∗) with respect to T (C). As T (z) ∈ T (C ′)

and T (C ′) ⊥ T (C), we see that T (C ′) also passes through T (z∗), and hence C ′

passes through z∗.

(c) First we show thatC andC ′must intersect. Suppose not, choose a T ∈M sending
C to the x−axis. Then T (C ′) is a circle not intersecting the x−axis. (It cannot
be a straight line, otherwise C ′ intersects C.) So T (C ′) lies either in the upper
half-plane or the lower half-plane.

But according to (a), any pair of symmetric points are reflection of each other. It
must be that exactly one of them lies in the upper half-plane and exactly one lying
in the lower half-plane. It follows that T (C ′) cannot pass through both of these
points, a contradiction.

Now it is clear that, no matterC andC ′ are circles or straight lines, there is always
a T ∈ M sending them to a pair of intersecting straight lines T (C) and T (C ′)
whose intersection point (6=∞) corresponds to any given intersection point of C
and C ′. We need to show that T (C) and T (C ′) are perpendicular. But as argued
above, this follows from the assumption that T (C ′) contains a pair of reflection
points with respect to T (C).


