MMATS5120 - Topics in Geometry
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2. (a) The general form of a straight line £ is given by

where A and B are real numbers, not both equal to 0.

Then

Ar+ By+C =0

0o if B=0
f6) =

— 2 otherwise
B

(1)

LetT : (z,y) — (x+x0,y+yo) be atranslation (xg, yo € R). Then T'(¢) consists

of points (z',1y’) satisfying

o =x+x0, ¥ =Y+ yo

It is equivalent to

and Ax+ By+C =0.

Al —x0)+ By —yo) +C =0
< Az’ + By + (—Axy — Byy+ C) = 0.

The last expression represents a straight line.



(b)

(c)

3. (a)

(b)

(c)

Let R : x + iy — e(x + iy) be a rotation (f € [0,27]). Then S(¢) consists of
points (2',y') satisfying

' +iy =e(x+iy) and Az + By+C =0. (2)

Notice z + iy = e (2’ +iy') = (2'cos§ + 1/ sin ) +i(y cos§ — 2'sin6). @)
is equivalent to
A(x' cos + 3y sin) + B(y' cosf — 2'sinf) + C =0
< (Acosf — Bsinf)z' + (Asinf + Beos)y + C = 0.

The last expression represents a straight line.

Since any transformations in the Euclidean geometry are compositions of a rota-
tion and a translation which, as we have just seen, preserve D, the same is true

for these transformations.
Yes. By (a), T'(¢) is represented by
Ax' + By + (—Axy — By, + C) = 0.
Then by (),
A
FT(0) = =5 = 1(0).
This proves that f is invariant under translational geometry.

No. For example, take ¢ = x—axis. Then f(¢) = 0. If we apply the rotation R by
90° clockwise to ¢, we get R({) = y—axis with f(R({)) = oo # 0.
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Recall the formula

Z — 29 21 — 3 w— W2 W1 — Ws

21— 2y Z—2Z23 W —Wy W—Wws
Put (21, 22, 23) = (0,4,2) and (wy, wy, w3) = (—2i,1,0). We get
z—2
2(1+d)z —i

Let @ € C — {1,i} be a variable which is sent to co. We look for T, € M
satisfying

1 — 1
T = 1.
a — 00

By the formula above, we have (w = T,(z))
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Remark. There are indeed more than one expression for the answer, but each

Tu(2) =

expression is related to the other by a change of variable for a.

4. Let ' and C be two clines. Pick three distinct points 21, 20,23 € C4 and three
distinct points wi, we, w3 € Cy. By the fundamental theorem of Moebius geometry,
there exists a (unique) 7 € M such that T'(z;) = w;, i = 1,2,3. Since Moebius
transformations map clines to clines, it follows that 7'(C') is a cline passing through
Wi, Wa, W3.

Finally, using the fact that every cline is uniquely determined by any of its three

distinct points, we conclude 7'(Cy) = Cb.

5. Recall z and z* are symmetric with respect to a cline C' if

(2, 215 22, 23) = (2%, 215 22, 23) (3)
where 21, 2o, 23 are any three distinct points of C'.
Recall also that Moebius transformations preserve symmetry, i.e. if z and z* are
symmetric with respect to C, then 7'(z) and T'(z*) are symmetric with respect to
T(C).
(a) Suppose first that C' is the x—axis. Choose (z1, 22, 23) = (1,0, 00). Then (3) is

equivalent to

4

or

ZF =

8]

so symmetry is indeed equivalent to reflection in the usual sense.

Assume now C' is a general straight line. Then there exists a transformation S
in the Euclidean geometry (i.e. the composite of a translation and a rotation)
sending C to the x—axis. The key point is that S preserves both symmetry (being

a Moebius transformation) and reflection (being a rigid motion). It follows that if
z and z* are symmetric with respect to C,

then

S(z) and S(z") are symmetric with respect to the x-axis.

From what we have proved above, we have
S(z) is the reflection of S(z*) with respect to the x-axis,

and hence

z = 871(S(z)) is the reflection of S1(S(2*)) = z* w.rt S~ (z-axis) = C.



(b) In this part and the next, we may assume C' and C’ are general clines.
Choose a T' € M sending an intersection point of C' and C’ to co. Then T'(C)
and T'(C") are two perpendicular straight lines (as 7" preserves orthogonality).
Moreover T'(z) and T'(z*) are symmetric with respect to 7'(C).
By (a), T'(z) is the reflection of T'(z*) with respect to T'(C). As T'(z) € T(C")
and T'(C") L T(C), we see that T'(C") also passes through 7'(z*), and hence C’

passes through z*.

(c) First we show that C' and C’ must intersect. Suppose not, choose a’T" € M sending
C' to the x—axis. Then T'(C") is a circle not intersecting the x—axis. (It cannot
be a straight line, otherwise C” intersects C.) So T'(C") lies either in the upper
half-plane or the lower half-plane.

But according to (a), any pair of symmetric points are reflection of each other. It
must be that exactly one of them lies in the upper half-plane and exactly one lying
in the lower half-plane. It follows that 7(C") cannot pass through both of these

points, a contradiction.

Now it is clear that, no matter C' and C" are circles or straight lines, there is always
aT € M sending them to a pair of intersecting straight lines 7(C') and T'(C")
whose intersection point (# oo) corresponds to any given intersection point of C'
and C’. We need to show that 7'(C') and 7'(C") are perpendicular. But as argued
above, this follows from the assumption that 7'(C") contains a pair of reflection

points with respect to T'(C').



